Level-Planarity: Transitivity vs. Even Crossings
نویسندگان
چکیده
Fulek et al. (2013, 2016, 2017) have presented Hanani-Tutte results for (radial) level-planarity, i.e., a graph is level-planar if it admits level drawing where any two independent edges cross an even number of times. We show that the 2-SAT formulation level-planarity testing due to Randerath (2001) equivalent strong theorem (2013). By elevating this relationship radial we obtain novel polynomial-time algorithm in spirit
منابع مشابه
Removing Even Crossings, Continued
In this paper we investigate how certain results related to the HananiTutte theorem can be lifted to orientable surfaces of higher genus. We give a new simple, geometric proof that the weak Hanani-Tutte theorem is true for higher-genus surfaces. We extend the proof to prove that bipartite generalized thrackles in a surface S can be embedded in S. We also show that a result of Pach and Tóth that...
متن کاملRemoving Independently Even Crossings
We show that cr(G) ≤ (2 iocr(G) 2 ) settling an open problem of Pach and Tóth [5,1]. Moreover, iocr(G) = cr(G) if iocr(G) ≤ 2.
متن کاملRemoving even crossings
An edge in a drawing of a graph is called even if it intersects every other edge of the graph an even number of times. Pach and Tóth proved that a graph can always be redrawn such that its even edges are not involved in any intersections. We give a new, and significantly simpler, proof of a slightly stronger statement. We show two applications of this strengthened result: an easy proof of a the...
متن کاملRemoving Even Crossings on Surfaces
We give a new, topological proof that the weak Hanani-Tutte theorem is true on orientable surfaces and extend the result to nonorientable surfaces. That is, we show that if a graph G cannot be embedded on a surface S, then any drawing of G on S must contain two edges that cross an odd number of times. We apply the result and proof techniques to obtain new and old results about generalized thrac...
متن کاملLempel, Even, and Cederbaum Planarity Method
We present a simple pedagogical graph theoretical description of Lempel, Even, and Cederbaum (LEC) planarity method based on concepts due to Thomas. A linear-time implementation of LEC method using the PC-tree data structure of Shih and Hsu is provided and described in details. We report on an experimental study involving this implementation and other available linear-time implementations of pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2022
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/10814